

Welcome to Solarhouse’s documentation!

Contents:

	About Solarhouse project

	Installation
	Installation from pypi:

	Installation from github

	Quick start

	Thermal theory and Modeling.
	Calculation of heat spreading from point to point

	Calculation Class
	Building Class

	Export

	Helpers

	Building Class
	ThermalProcess Class

	Export

	Helpers

	ThermalProcess Class
	ThermalModel Class

	ThermalModel Class
	ThermalElement Class

	ThermalElement Class

Indices and tables

	Index

	Module Index

	Search Page

About Solarhouse project

This projects allows you to calculate how many solar energy you can collect on faces of your house and it changes heating season.

For make it you need to load mesh file (.stl or .obj) which represents form of your house and specify some parameters of the house.
After that just start calculation and get plots of temperatures of elements inside house.

For work with faces of mesh of house used library PyMesh [https://pymesh.readthedocs.io/en/latest/]

To calculate solar power on each face of house with different tilt and azimuth in py-solarhouse uses PVLIB [https://pvlib-python.readthedocs.io/en/stable/]
This library makes it possible to take the weather into account when calculating power.

All thermal processes in the house calculated by models. These models are described here: Thermal theory

Substituting different parameters of the house, you can carry out the calculation for each configuration and choose the best combination of parameters to save energy for heating.

Installation

Solarhouse requires python3 and python3-pip.
Also project requires follows packages:

	numpy;

	scipy;

	trimesh;

	pvlib;

	pandas;

	matplotlib;

	mpld3;

	shapely;

	jinja2;

	netCDF4;

	siphon;

	tables;

All of these packages are in file requirements.txt

Installation from pypi:

All requirements will be installed automatically

$ pip install solarhouse

Installation from github

Requires python3 and python3-pip

$ git clone https://github.com/yaricp/py-solarhouse.git
$ cd py-solarhouse
$./install.sh

then you start ./install.sh

Quick start

After installation of package you can use it in you code.

Firstly you need to create mesh file which represent shape of house.

It can be create in Free SketchUp [https://app.sketchup.com]

Also it can be create on any 3D editors which can formed files .obj and .stl

After that put this mesh file to .files/ folder.

For example:

file main.py:

import os

import uuid

import settings
from solarhouse.building import Building
from solarhouse.calculation import Calculation
import solarhouse.export as export

def main():
 calc = Calculation(
 tz=settings.TZ,
 geo=settings.GEO,
 building=Building(
 mesh_file=settings.PATH_FILE_OBJECT,
 geo=settings.GEO,
 wall_material=settings.WALL_MATERIAL,
 wall_thickness=settings.WALL_THICKNESS,
 start_temp_in=settings.TEMPERATURE_START,
 power_heat_inside=settings.POWER_HEAT_INSIDE,
 efficiency=settings.EFF,
 heat_accumulator={
 'volume': 0.032,
 'material': 'water',
 },
 windows={
 'area': 0.3,
 'therm_r': 5.0,
 },
 floor={
 'area': 1.0,
 'material': 'adobe',
 'thickness': 0.2,
 't_out': 4.0,
 },
),
)
 data_frame = calc.compute(date=22, month=12, year=2019, with_weather=False)
 calc_id = str(uuid.uuid4())
 output_dir = os.path.join(settings.PATH_OUTPUT, calc_id)
 os.makedirs(output_dir, exist_ok=True)
 csv_file_path = export.as_file(data_frame, 'csv', output_dir)
 export.as_html(data_frame, output_dir)

if __name__ == "__main__":
 main()

file settings.py:

import os
import pathlib

_this_dir = pathlib.Path(__file__).parent.absolute()

PATH_FILE_OBJECT = os.path.join(_this_dir, 'files/cube.obj')
TIME_TICK = 1 #1 hours
WALL_THICKNESS = 0.3
TEMPERATURE_START = 20 #celcium
POWER_HEAT_INSIDE = 0 #kWtt
MASS_INSIDE = 500 #kg
PATH_FILE_TEMPERATURE_OUTSIDE_FILE = os.path.join(_this_dir, 'files/temp_table.csv')
PATH_EXPORT_THERMO_RESULT_FILE = os.path.join(_this_dir, 'files/results.csv')
SPACE_POWER_ON_METER = 1000
WALL_MATERIAL = 'adobe'
EFF = 75 #in percents
EFF_ANG = 85.0
GEO = {
 'latitude': 54.841426,
 'longitude': 83.264479,
}
TZ = 'Asia/Novosibirsk'
COUNT_FACES_FOR_PARALLEL_CALC = 1000
PATH_OUTPUT = os.path.join(_this_dir, 'output')

All parameters of a house (mesh, thickness of wall, material of walls and etc.) sets in file settings.py

After that you can start calculation:

$python3 main.py

As result you get two files in folder with output/<calc_id> : data.csv and plot.html like on pictures:

[image: _images/example1.png]

Thermal theory and Modeling.

Theory based on heat equation: wiki [https://en.wikipedia.org/wiki/Heat_equation]

All procces heat spreading is described by the formula:

\[du/dt =\alpha(d^2u/dx^2 + d^2u/dy^2+ d^2u/dz^2)\]

Calculations using this formula are very complex and time consuming.

This why needs to simplify calculations. For this we can create simple thermal model of house.

Simple model of a house is a thermal shell with a massive object inside like on picture:

[image: _images/model-1.png]
All elements of this model we can represent as a thermo point or a set of thermal layers.
For each elements where temperature distribution by element volume is not important can be considered a thermal point.
For example inside water thermal accumulator temperature distribution by element volume does very quickly.
For elements which situated in thermal shell of model of house needs to take into account the temperature distribution of the layers from the inside to outside.
Each of layers can be considered a thermal point.

For calculate all model needs to link all elements to scheme.

Depends of type of solar collectors the begin point of heat spreading can be thermal accumulator or air inside house.

Scheme of heat spreading from thermal accumulator:

[image: _images/schema1.png]
Scheme of heat spreading from air inside:

[image: _images/schema2.png]
Scheme of heat spreading from walls of house:

[image: _images/schema3.png]

Note

This model works best for regular convex house shapes.
If the shape is not regular and has many protruding parts, then the model does not work well.

Calculation of heat spreading from point to point

The calculation is performed over a very small period of time. If the calculation is done for a layered element, then the layers are also very small.

Heat balance of each thermal point can be described by the formula:

\[Qinside = cm(t2 - t1)\]

\[Qlost = \alpha*A(Tin - Tout)\]

\[Qenter = Qinside + Qlost = cm(t2 - t1) + \alpha*A(Tin - Tout)\]

c - heat capacity of material of point;

m - mass of thermal point (or of one layer);

t2 - temperature in finish of dt;

t1 - temperature in begin of dt;

alpha - thermal diffusivity of material of point;

A - area of next element;

Tin - temperature of current point on begin calculation;

Tout - temperature of next point on begin calculation;

On the follows pictures you can see process for some layers:

[image: _images/layers1.png]
[image: _images/layers2.png]
As you can see on picture heat which lost on first layer is a enter heat of second layer.

Note

Calculation on each small period of time made on all thermal points and all layers from first element to finish element.
Process running by scheme from point by point on each period of time.

Now in package we use only three scheme of elements.

Note

Last element of each scheme is a temperature of outside.
There are several last elements. For example temperature outside can be not equal temperature under floor of house.

And the last assumption that we make in the calculations is that the area of layers in layered elements does not change from inside to outside.

Such an assumption is justified with a thin wall relative to the linear dimensions of the house.

If you set thick walls with small size house you get wrong result of thermal calculation.

As result if has all described above assumption you can get approximate result of temperature inside the a house.

From this you can estimate how much the heating season will be reduced.

Calculation Class

	
class solarhouse.calculation.Calculation(tz: str, geo: dict, building: solarhouse.building.Building)

	Class implements methods for calculate of the solar power
what you can take on faces of the building.
As a result you can get html page with graphics.
Alternatively, you can export data in file CSV or JSON.

	
compute(date: datetime.datetime = None, month: datetime.datetime = None, year: datetime.datetime = None, period: tuple = None, with_weather: bool = True) → None

	proxy method for prepare period and calculations.

	
start_calculation(start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, with_weather: bool = True) → None

	Start calculations.

Contents:

	Building Class
	ThermalProcess Class
	ThermalModel Class
	ThermalElement Class

	Export

	Helpers

Building Class

	
class solarhouse.building.Building(mesh_file: str, geo: dict, wall_material: str = 'adobe', wall_thickness: float = 0.3, start_temp_in: float = 20, power_heat_inside: float = 0, efficiency: float = 60, cover_material: str = None, heat_accumulator: dict = {'material': 'water', 'volume': 0.02}, **kwargs)

	Class implements methods for work with buildings for which calculate
sun energy.
Example: create building and test some it`s parameters.

>>> text = 'o Cube\n'
>>> text += 'v 1.000000 1.000000 -1.000000\n'
>>> text += 'v 1.000000 0.000000 -1.000000\n'
>>> text += 'v 1.000000 1.000000 0.000000\n'
>>> text += 'v 1.000000 0.000000 0.000000\n'
>>> text += 'v 0.000000 1.000000 -1.000000\n'
>>> text += 'v 0.000000 0.000000 -1.000000\n'
>>> text += 'v 0.000000 1.000000 0.000000\n'
>>> text += 'v 0.000000 0.000000 0.000000\n'
>>> text += 's off\n'
>>> text += 'f 1/1/1 5/2/1 7/3/1 3/4/1\n'
>>> text += 'f 4/5/2 3/6/2 7/7/2 8/8/2\n'
>>> text += 'f 8/8/3 7/7/3 5/9/3 6/10/3\n'
>>> text += 'f 6/10/4 2/11/4 4/12/4 8/13/4\n'
>>> text += 'f 2/14/5 1/15/5 3/16/5 4/17/5\n'
>>> text += 'f 6/18/6 5/19/6 1/20/6 2/11/6\n'
>>> with open('test_file.obj','a') as file: file.write(text)
418
>>> geo = {'latitude': 54.841426, 'longitude': 83.264479}
>>> vertices = [[0,0,0],[1,0,0],[1,1,0],[0,1,0],[0,1,1],[0,0,1],[1,0,1], [1,1,1]]
>>> material = {'birch': { 'density': 700.0, 'transcalency': 0.15, 'heat_capacity': 1250.0}}
>>> b = Building(mesh_file='test_file.obj', geo=geo, wall_thickness=0.3, wall_material='birch', properties_materials=material)
>>> import os
>>> os.remove('test_file.obj')
>>> b.wall_thickness
0.3
>>> b.mesh.area
6.0
>>> round(b.mesh_inside.volume, 3)
0.064
>>> b.mesh.center_mass
array([0. , 0. , 0.5])
>>> b.floor_area_outside
1.0
>>> round(b.floor_area_inside, 3)
0.16
>>> b.windows['area']
0.0
>>> b.windows['area'] = 0.5
>>> b.walls_area_outside
4.5
>>> round(b.walls_area_inside, 3)
0.3
>>> b.heat_accumulator['mass'] = 1
>>> b.heat_accumulator['density'] = 1000
>>> b.get_perimeter_floor('inside')
1.6
>>> round(b.area_mass_walls_inside, 2)
0.2
>>> round(b.volume_air_inside, 3)
0.044
>>> b.get_perimeter_floor('outside')
4.0
>>> round(b.area_mass_walls_outside, 3)
1.7
>>> import datetime, pytz
>>> date = datetime.datetime(day=22, month=6, year=2020)

	
area_mass_walls_inside

	Calculates area of the walls around the heat accumulator
inside the house.

	
area_mass_walls_outside

	Calculates area of the walls around the heat accumulator outside
the house.

	
calc_reflect_power(power: float, sun_ang: float, cover_material: str = 'polycarbonat') → float

	Calculates
power of reflection based on :
https://majetok.blogspot.ru/2014/05/vid-na-teplicu.html.
Returns: float of power of the reflection of material.

	
calc_sun_power_on_faces() → None

	Calculates the power of sun on all faces of the building.

	Returns

	self
changed self.power_data, self.power_data_by_days

	
floor_area_inside

	Calculates area floor inside the house

	
floor_area_outside

	Calculates area floor outside the house

	
floor_thickness

	Get floor thickness

	
get_efficient_angle(reflect_material: dict = None) → float

	Get angle for material.

	
get_perimeter_floor(where: str) → float

	Calculate perimeter of floor

	Parameters

	where – ‘inside’ or ‘outside’

	Returns

	float value of perimeter

	
get_prop(material: str, prop: str) → float

	Retrieve a value of property for some materials.

	Parameters

	
	material – string of name material

	prop – string of name property

	Returns

	float of value property

	
get_pv_power_face(face_tilt: float, face_azimuth: float, face_area: float) → float

	Get Irradiation from PVLIB.

	Parameters

	
	face_tilt – angle between normal of face and horizontal plane

	face_azimuth – angle between normal of face and north direction

	face_area – float value of area of face

	Returns

	pandas DataFrame with sun power of current period.

	
heat_accumulator_volume

	Get volume of heat accumulator

	
mesh_inside

	Get mesh of inside walls and floor of the house

	
projection_on_flat(vector: tuple) → tuple

	get vector what is projection vector on the flat plane.

	
volume_air_inside

	Calculates volume of the air inside the house

	
walls_area_inside

	Calculates area of walls inside the house

	
walls_area_outside

	Calculates area of walls outside the house

Contents:

	ThermalProcess Class
	ThermalModel Class

ThermalProcess Class

	
class solarhouse.thermal_process.ThermalProcess(t_start: float, building: solarhouse.building.Building, variant: str = 'heat_to_mass', for_plots: list = ['mass'])

	Class implements all calculations of thermal processes in a house.
There are three main models of a house:
1. All solar power comes into massive body (water tank, concrete

plate, etc.) in the house with respect to efficient coefficient
of water solar collector.

	All solar power heats up air inside the house with respect
efficient coefficient of air solar collector.

	All solar power heats up walls through a glass dome.

	
run_process() → dict

	Start main calculation process.
In the end of process it show a plots of temperatures

	Returns

	dict data of elements in house for plots.

Contents:

	ThermalModel Class
	ThermalElement Class

ThermalModel Class

	
class solarhouse.thermal_model.ThermalModel(name, **kwargs)

	Class implements process of calculation of some model
of thermal object which contains several thermal elements.
As a result you can take plots of temperatures of some thermal elements.

	
make_init_conditions() → None

	Initialize conditions in elements.

	
show_schema()

	Shows schema of chain.

	
start(count: int, dt: int, power: float, t_out: float) → dict

	
	Parameters

	
	count – count of calculation

	dt – time for calculation (seconds)

	power – input power in first thermal element (Watt)

	t_out – temperature of last element

	Returns

	dict of data of temperatures of elements.

Contents:

	ThermalElement Class

ThermalElement Class

	
class solarhouse.thermal_element.ThermalElement(name, temp0=None, density=None, heat_capacity=None, volume=None, **kwargs)

	Implements thermal element for thermal computation.
Represents a point with heat capacity.
Change of temperature of this point depends on sum of input and
output energy and heat capacity (output energy is negative).
Several elements can be connected into a chain of elements.
Output energy depends on temperature of current element, temperature of
next element in chain, and thermal resistance between each other.
An element can have several elements of output enegry.
Second and further elements must have area of input face (square meters)
and input coefficient of transcalency on input face.

Also element may be represented as a wall with a variable area
and with variable thermal resistance on each increment of thickness, dx.
Computation is implemented in single dimension, dx (meters).
All computations are performed for increments of time, dt.
Example: compute temperature of 1 cubic meter of water in 1 hour with

1 kW of power applied:

>>> e = ThermalElement(name='cube_water', temp0=0, density=997, heat_capacity=4180, volume=1)
>>> e.count_layers
1
>>> e.compute(q_enter=1000, dt=3600)
>>> round(e.temp, 3)
0.864
>>>
Example: calculate temperature of inside face of wall of birch
with dx = 0.01 m and external power of 1 kW.
Result of test calculated manually.
>>> e = ThermalElement(name='birch_wall', temp0=20.0, density=700.0, heat_capacity=1250.0, dx=0.01, thickness=0.20, kappa=0.15, area_inside=1.0, area_outside=1.1)
>>> e.count_layers
20
>>> e.dTx_list
[20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]
>>> e.get_loss_dx(0)
0.0
>>> e.compute(q_enter=1000, dt=1)
>>> round(e.dTx_list[0], 3)
20.109
>>> round(e.dTx_list[1], 3)
20.0
>>> round(e.get_loss_dx(0),3)
1.714
>>> e.compute(q_enter=1000, dt=1)
>>> round(e.dTx_list[0], 3)
20.218
>>> round(e.dTx_list[1], 4)
20.0002
>>>
Example element which implementing thin layer between two areas
>>> e = ThermalElement(name='glass', temp0=20.0, area_inside=1.0, input_alpha=23,)
>>> e.calc_loss_input_q(25.0)
115.0

	
calc_loss_input_q(t_in: float) → float

	Calculates loss energy between current and previous elements

	
calc_temp(q_enter: float, q_loss: float, iterator: int, dt: float) → None

	Calculates the dT on dt of current point (dx) of element.
If element represent as a point then calculates.
Tdx = Tdx0 + (q_enter - q_loss)/cmdx

	Parameters

	
	q_enter – enter power from previouse element or source of power

	q_loss – total power loss from current point dx

	iterator – number of current dx

	dt – range of time for calculate

	Returns

	Nothing returns but change temperature in list of
temperatures by dx in the current point

	
compute(q_enter: float, dt: float) → None

	Start of calculate temperature of element if
it represent as a point or calculate of all
temperatures by dx if element has the dx parameter

	Parameters

	
	q_enter – input power

	dt – range of time

	Returns

	change self.temp parameter in the end of calculation

	
get_loss_dx(iterator)

	Defines loss energy from current element on dx or from all
element if it represent in calculation as a point.
q_loss = alpha*area_branch*(T_current - T_branch)

	Parameters

	iterator – number of dx, 0 if element as a point

	Returns

	Float value of all loss power

	
init_conditions(val)

	Reduction to initial conditions

Export

	
solarhouse.export.as_file(pd_data: pandas.core.frame.DataFrame, type_file: str = 'csv', path: str = 'output') → None

	Export results to file.

	
solarhouse.export.as_html(pd_data: pandas.core.frame.DataFrame, output_file_dir: str) → None

	Create HTML page with graphics.

Helpers

	
solarhouse.helpers.prepare_period(tz, date: datetime.datetime = None, month: datetime.datetime = None, year: datetime.datetime = None, period: tuple = None) → tuple

	Prepare period to retrieve data of weather and calculate sun power.
:param tz: - time zone of geoposition of building
:param date:
:param month:
:param year:
:param period:
:return: tuple (start , end) - begin and end of period.

Building Class

	
class solarhouse.building.Building(mesh_file: str, geo: dict, wall_material: str = 'adobe', wall_thickness: float = 0.3, start_temp_in: float = 20, power_heat_inside: float = 0, efficiency: float = 60, cover_material: str = None, heat_accumulator: dict = {'material': 'water', 'volume': 0.02}, **kwargs)

	Class implements methods for work with buildings for which calculate
sun energy.
Example: create building and test some it`s parameters.

>>> text = 'o Cube\n'
>>> text += 'v 1.000000 1.000000 -1.000000\n'
>>> text += 'v 1.000000 0.000000 -1.000000\n'
>>> text += 'v 1.000000 1.000000 0.000000\n'
>>> text += 'v 1.000000 0.000000 0.000000\n'
>>> text += 'v 0.000000 1.000000 -1.000000\n'
>>> text += 'v 0.000000 0.000000 -1.000000\n'
>>> text += 'v 0.000000 1.000000 0.000000\n'
>>> text += 'v 0.000000 0.000000 0.000000\n'
>>> text += 's off\n'
>>> text += 'f 1/1/1 5/2/1 7/3/1 3/4/1\n'
>>> text += 'f 4/5/2 3/6/2 7/7/2 8/8/2\n'
>>> text += 'f 8/8/3 7/7/3 5/9/3 6/10/3\n'
>>> text += 'f 6/10/4 2/11/4 4/12/4 8/13/4\n'
>>> text += 'f 2/14/5 1/15/5 3/16/5 4/17/5\n'
>>> text += 'f 6/18/6 5/19/6 1/20/6 2/11/6\n'
>>> with open('test_file.obj','a') as file: file.write(text)
418
>>> geo = {'latitude': 54.841426, 'longitude': 83.264479}
>>> vertices = [[0,0,0],[1,0,0],[1,1,0],[0,1,0],[0,1,1],[0,0,1],[1,0,1], [1,1,1]]
>>> material = {'birch': { 'density': 700.0, 'transcalency': 0.15, 'heat_capacity': 1250.0}}
>>> b = Building(mesh_file='test_file.obj', geo=geo, wall_thickness=0.3, wall_material='birch', properties_materials=material)
>>> import os
>>> os.remove('test_file.obj')
>>> b.wall_thickness
0.3
>>> b.mesh.area
6.0
>>> round(b.mesh_inside.volume, 3)
0.064
>>> b.mesh.center_mass
array([0. , 0. , 0.5])
>>> b.floor_area_outside
1.0
>>> round(b.floor_area_inside, 3)
0.16
>>> b.windows['area']
0.0
>>> b.windows['area'] = 0.5
>>> b.walls_area_outside
4.5
>>> round(b.walls_area_inside, 3)
0.3
>>> b.heat_accumulator['mass'] = 1
>>> b.heat_accumulator['density'] = 1000
>>> b.get_perimeter_floor('inside')
1.6
>>> round(b.area_mass_walls_inside, 2)
0.2
>>> round(b.volume_air_inside, 3)
0.044
>>> b.get_perimeter_floor('outside')
4.0
>>> round(b.area_mass_walls_outside, 3)
1.7
>>> import datetime, pytz
>>> date = datetime.datetime(day=22, month=6, year=2020)

	
area_mass_walls_inside

	Calculates area of the walls around the heat accumulator
inside the house.

	
area_mass_walls_outside

	Calculates area of the walls around the heat accumulator outside
the house.

	
calc_reflect_power(power: float, sun_ang: float, cover_material: str = 'polycarbonat') → float

	Calculates
power of reflection based on :
https://majetok.blogspot.ru/2014/05/vid-na-teplicu.html.
Returns: float of power of the reflection of material.

	
calc_sun_power_on_faces() → None

	Calculates the power of sun on all faces of the building.

	Returns

	self
changed self.power_data, self.power_data_by_days

	
floor_area_inside

	Calculates area floor inside the house

	
floor_area_outside

	Calculates area floor outside the house

	
floor_thickness

	Get floor thickness

	
get_efficient_angle(reflect_material: dict = None) → float

	Get angle for material.

	
get_perimeter_floor(where: str) → float

	Calculate perimeter of floor

	Parameters

	where – ‘inside’ or ‘outside’

	Returns

	float value of perimeter

	
get_prop(material: str, prop: str) → float

	Retrieve a value of property for some materials.

	Parameters

	
	material – string of name material

	prop – string of name property

	Returns

	float of value property

	
get_pv_power_face(face_tilt: float, face_azimuth: float, face_area: float) → float

	Get Irradiation from PVLIB.

	Parameters

	
	face_tilt – angle between normal of face and horizontal plane

	face_azimuth – angle between normal of face and north direction

	face_area – float value of area of face

	Returns

	pandas DataFrame with sun power of current period.

	
heat_accumulator_volume

	Get volume of heat accumulator

	
mesh_inside

	Get mesh of inside walls and floor of the house

	
projection_on_flat(vector: tuple) → tuple

	get vector what is projection vector on the flat plane.

	
volume_air_inside

	Calculates volume of the air inside the house

	
walls_area_inside

	Calculates area of walls inside the house

	
walls_area_outside

	Calculates area of walls outside the house

Contents:

	ThermalProcess Class
	ThermalModel Class

ThermalProcess Class

	
class solarhouse.thermal_process.ThermalProcess(t_start: float, building: solarhouse.building.Building, variant: str = 'heat_to_mass', for_plots: list = ['mass'])

	Class implements all calculations of thermal processes in a house.
There are three main models of a house:
1. All solar power comes into massive body (water tank, concrete

plate, etc.) in the house with respect to efficient coefficient
of water solar collector.

	All solar power heats up air inside the house with respect
efficient coefficient of air solar collector.

	All solar power heats up walls through a glass dome.

	
run_process() → dict

	Start main calculation process.
In the end of process it show a plots of temperatures

	Returns

	dict data of elements in house for plots.

Contents:

	ThermalModel Class
	ThermalElement Class

ThermalModel Class

	
class solarhouse.thermal_model.ThermalModel(name, **kwargs)

	Class implements process of calculation of some model
of thermal object which contains several thermal elements.
As a result you can take plots of temperatures of some thermal elements.

	
make_init_conditions() → None

	Initialize conditions in elements.

	
show_schema()

	Shows schema of chain.

	
start(count: int, dt: int, power: float, t_out: float) → dict

	
	Parameters

	
	count – count of calculation

	dt – time for calculation (seconds)

	power – input power in first thermal element (Watt)

	t_out – temperature of last element

	Returns

	dict of data of temperatures of elements.

Contents:

	ThermalElement Class

ThermalElement Class

	
class solarhouse.thermal_element.ThermalElement(name, temp0=None, density=None, heat_capacity=None, volume=None, **kwargs)

	Implements thermal element for thermal computation.
Represents a point with heat capacity.
Change of temperature of this point depends on sum of input and
output energy and heat capacity (output energy is negative).
Several elements can be connected into a chain of elements.
Output energy depends on temperature of current element, temperature of
next element in chain, and thermal resistance between each other.
An element can have several elements of output enegry.
Second and further elements must have area of input face (square meters)
and input coefficient of transcalency on input face.

Also element may be represented as a wall with a variable area
and with variable thermal resistance on each increment of thickness, dx.
Computation is implemented in single dimension, dx (meters).
All computations are performed for increments of time, dt.
Example: compute temperature of 1 cubic meter of water in 1 hour with

1 kW of power applied:

>>> e = ThermalElement(name='cube_water', temp0=0, density=997, heat_capacity=4180, volume=1)
>>> e.count_layers
1
>>> e.compute(q_enter=1000, dt=3600)
>>> round(e.temp, 3)
0.864
>>>
Example: calculate temperature of inside face of wall of birch
with dx = 0.01 m and external power of 1 kW.
Result of test calculated manually.
>>> e = ThermalElement(name='birch_wall', temp0=20.0, density=700.0, heat_capacity=1250.0, dx=0.01, thickness=0.20, kappa=0.15, area_inside=1.0, area_outside=1.1)
>>> e.count_layers
20
>>> e.dTx_list
[20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]
>>> e.get_loss_dx(0)
0.0
>>> e.compute(q_enter=1000, dt=1)
>>> round(e.dTx_list[0], 3)
20.109
>>> round(e.dTx_list[1], 3)
20.0
>>> round(e.get_loss_dx(0),3)
1.714
>>> e.compute(q_enter=1000, dt=1)
>>> round(e.dTx_list[0], 3)
20.218
>>> round(e.dTx_list[1], 4)
20.0002
>>>
Example element which implementing thin layer between two areas
>>> e = ThermalElement(name='glass', temp0=20.0, area_inside=1.0, input_alpha=23,)
>>> e.calc_loss_input_q(25.0)
115.0

	
calc_loss_input_q(t_in: float) → float

	Calculates loss energy between current and previous elements

	
calc_temp(q_enter: float, q_loss: float, iterator: int, dt: float) → None

	Calculates the dT on dt of current point (dx) of element.
If element represent as a point then calculates.
Tdx = Tdx0 + (q_enter - q_loss)/cmdx

	Parameters

	
	q_enter – enter power from previouse element or source of power

	q_loss – total power loss from current point dx

	iterator – number of current dx

	dt – range of time for calculate

	Returns

	Nothing returns but change temperature in list of
temperatures by dx in the current point

	
compute(q_enter: float, dt: float) → None

	Start of calculate temperature of element if
it represent as a point or calculate of all
temperatures by dx if element has the dx parameter

	Parameters

	
	q_enter – input power

	dt – range of time

	Returns

	change self.temp parameter in the end of calculation

	
get_loss_dx(iterator)

	Defines loss energy from current element on dx or from all
element if it represent in calculation as a point.
q_loss = alpha*area_branch*(T_current - T_branch)

	Parameters

	iterator – number of dx, 0 if element as a point

	Returns

	Float value of all loss power

	
init_conditions(val)

	Reduction to initial conditions

Export

	
solarhouse.export.as_file(pd_data: pandas.core.frame.DataFrame, type_file: str = 'csv', path: str = 'output') → None

	Export results to file.

	
solarhouse.export.as_html(pd_data: pandas.core.frame.DataFrame, output_file_dir: str) → None

	Create HTML page with graphics.

Helpers

	
solarhouse.helpers.prepare_period(tz, date: datetime.datetime = None, month: datetime.datetime = None, year: datetime.datetime = None, period: tuple = None) → tuple

	Prepare period to retrieve data of weather and calculate sun power.
:param tz: - time zone of geoposition of building
:param date:
:param month:
:param year:
:param period:
:return: tuple (start , end) - begin and end of period.

ThermalProcess Class

	
class solarhouse.thermal_process.ThermalProcess(t_start: float, building: solarhouse.building.Building, variant: str = 'heat_to_mass', for_plots: list = ['mass'])

	Class implements all calculations of thermal processes in a house.
There are three main models of a house:
1. All solar power comes into massive body (water tank, concrete

plate, etc.) in the house with respect to efficient coefficient
of water solar collector.

	All solar power heats up air inside the house with respect
efficient coefficient of air solar collector.

	All solar power heats up walls through a glass dome.

	
run_process() → dict

	Start main calculation process.
In the end of process it show a plots of temperatures

	Returns

	dict data of elements in house for plots.

Contents:

	ThermalModel Class
	ThermalElement Class

ThermalModel Class

	
class solarhouse.thermal_model.ThermalModel(name, **kwargs)

	Class implements process of calculation of some model
of thermal object which contains several thermal elements.
As a result you can take plots of temperatures of some thermal elements.

	
make_init_conditions() → None

	Initialize conditions in elements.

	
show_schema()

	Shows schema of chain.

	
start(count: int, dt: int, power: float, t_out: float) → dict

	
	Parameters

	
	count – count of calculation

	dt – time for calculation (seconds)

	power – input power in first thermal element (Watt)

	t_out – temperature of last element

	Returns

	dict of data of temperatures of elements.

Contents:

	ThermalElement Class

ThermalElement Class

	
class solarhouse.thermal_element.ThermalElement(name, temp0=None, density=None, heat_capacity=None, volume=None, **kwargs)

	Implements thermal element for thermal computation.
Represents a point with heat capacity.
Change of temperature of this point depends on sum of input and
output energy and heat capacity (output energy is negative).
Several elements can be connected into a chain of elements.
Output energy depends on temperature of current element, temperature of
next element in chain, and thermal resistance between each other.
An element can have several elements of output enegry.
Second and further elements must have area of input face (square meters)
and input coefficient of transcalency on input face.

Also element may be represented as a wall with a variable area
and with variable thermal resistance on each increment of thickness, dx.
Computation is implemented in single dimension, dx (meters).
All computations are performed for increments of time, dt.
Example: compute temperature of 1 cubic meter of water in 1 hour with

1 kW of power applied:

>>> e = ThermalElement(name='cube_water', temp0=0, density=997, heat_capacity=4180, volume=1)
>>> e.count_layers
1
>>> e.compute(q_enter=1000, dt=3600)
>>> round(e.temp, 3)
0.864
>>>
Example: calculate temperature of inside face of wall of birch
with dx = 0.01 m and external power of 1 kW.
Result of test calculated manually.
>>> e = ThermalElement(name='birch_wall', temp0=20.0, density=700.0, heat_capacity=1250.0, dx=0.01, thickness=0.20, kappa=0.15, area_inside=1.0, area_outside=1.1)
>>> e.count_layers
20
>>> e.dTx_list
[20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]
>>> e.get_loss_dx(0)
0.0
>>> e.compute(q_enter=1000, dt=1)
>>> round(e.dTx_list[0], 3)
20.109
>>> round(e.dTx_list[1], 3)
20.0
>>> round(e.get_loss_dx(0),3)
1.714
>>> e.compute(q_enter=1000, dt=1)
>>> round(e.dTx_list[0], 3)
20.218
>>> round(e.dTx_list[1], 4)
20.0002
>>>
Example element which implementing thin layer between two areas
>>> e = ThermalElement(name='glass', temp0=20.0, area_inside=1.0, input_alpha=23,)
>>> e.calc_loss_input_q(25.0)
115.0

	
calc_loss_input_q(t_in: float) → float

	Calculates loss energy between current and previous elements

	
calc_temp(q_enter: float, q_loss: float, iterator: int, dt: float) → None

	Calculates the dT on dt of current point (dx) of element.
If element represent as a point then calculates.
Tdx = Tdx0 + (q_enter - q_loss)/cmdx

	Parameters

	
	q_enter – enter power from previouse element or source of power

	q_loss – total power loss from current point dx

	iterator – number of current dx

	dt – range of time for calculate

	Returns

	Nothing returns but change temperature in list of
temperatures by dx in the current point

	
compute(q_enter: float, dt: float) → None

	Start of calculate temperature of element if
it represent as a point or calculate of all
temperatures by dx if element has the dx parameter

	Parameters

	
	q_enter – input power

	dt – range of time

	Returns

	change self.temp parameter in the end of calculation

	
get_loss_dx(iterator)

	Defines loss energy from current element on dx or from all
element if it represent in calculation as a point.
q_loss = alpha*area_branch*(T_current - T_branch)

	Parameters

	iterator – number of dx, 0 if element as a point

	Returns

	Float value of all loss power

	
init_conditions(val)

	Reduction to initial conditions

ThermalModel Class

	
class solarhouse.thermal_model.ThermalModel(name, **kwargs)

	Class implements process of calculation of some model
of thermal object which contains several thermal elements.
As a result you can take plots of temperatures of some thermal elements.

	
make_init_conditions() → None

	Initialize conditions in elements.

	
show_schema()

	Shows schema of chain.

	
start(count: int, dt: int, power: float, t_out: float) → dict

	
	Parameters

	
	count – count of calculation

	dt – time for calculation (seconds)

	power – input power in first thermal element (Watt)

	t_out – temperature of last element

	Returns

	dict of data of temperatures of elements.

Contents:

	ThermalElement Class

ThermalElement Class

	
class solarhouse.thermal_element.ThermalElement(name, temp0=None, density=None, heat_capacity=None, volume=None, **kwargs)

	Implements thermal element for thermal computation.
Represents a point with heat capacity.
Change of temperature of this point depends on sum of input and
output energy and heat capacity (output energy is negative).
Several elements can be connected into a chain of elements.
Output energy depends on temperature of current element, temperature of
next element in chain, and thermal resistance between each other.
An element can have several elements of output enegry.
Second and further elements must have area of input face (square meters)
and input coefficient of transcalency on input face.

Also element may be represented as a wall with a variable area
and with variable thermal resistance on each increment of thickness, dx.
Computation is implemented in single dimension, dx (meters).
All computations are performed for increments of time, dt.
Example: compute temperature of 1 cubic meter of water in 1 hour with

1 kW of power applied:

>>> e = ThermalElement(name='cube_water', temp0=0, density=997, heat_capacity=4180, volume=1)
>>> e.count_layers
1
>>> e.compute(q_enter=1000, dt=3600)
>>> round(e.temp, 3)
0.864
>>>
Example: calculate temperature of inside face of wall of birch
with dx = 0.01 m and external power of 1 kW.
Result of test calculated manually.
>>> e = ThermalElement(name='birch_wall', temp0=20.0, density=700.0, heat_capacity=1250.0, dx=0.01, thickness=0.20, kappa=0.15, area_inside=1.0, area_outside=1.1)
>>> e.count_layers
20
>>> e.dTx_list
[20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]
>>> e.get_loss_dx(0)
0.0
>>> e.compute(q_enter=1000, dt=1)
>>> round(e.dTx_list[0], 3)
20.109
>>> round(e.dTx_list[1], 3)
20.0
>>> round(e.get_loss_dx(0),3)
1.714
>>> e.compute(q_enter=1000, dt=1)
>>> round(e.dTx_list[0], 3)
20.218
>>> round(e.dTx_list[1], 4)
20.0002
>>>
Example element which implementing thin layer between two areas
>>> e = ThermalElement(name='glass', temp0=20.0, area_inside=1.0, input_alpha=23,)
>>> e.calc_loss_input_q(25.0)
115.0

	
calc_loss_input_q(t_in: float) → float

	Calculates loss energy between current and previous elements

	
calc_temp(q_enter: float, q_loss: float, iterator: int, dt: float) → None

	Calculates the dT on dt of current point (dx) of element.
If element represent as a point then calculates.
Tdx = Tdx0 + (q_enter - q_loss)/cmdx

	Parameters

	
	q_enter – enter power from previouse element or source of power

	q_loss – total power loss from current point dx

	iterator – number of current dx

	dt – range of time for calculate

	Returns

	Nothing returns but change temperature in list of
temperatures by dx in the current point

	
compute(q_enter: float, dt: float) → None

	Start of calculate temperature of element if
it represent as a point or calculate of all
temperatures by dx if element has the dx parameter

	Parameters

	
	q_enter – input power

	dt – range of time

	Returns

	change self.temp parameter in the end of calculation

	
get_loss_dx(iterator)

	Defines loss energy from current element on dx or from all
element if it represent in calculation as a point.
q_loss = alpha*area_branch*(T_current - T_branch)

	Parameters

	iterator – number of dx, 0 if element as a point

	Returns

	Float value of all loss power

	
init_conditions(val)

	Reduction to initial conditions

ThermalElement Class

	
class solarhouse.thermal_element.ThermalElement(name, temp0=None, density=None, heat_capacity=None, volume=None, **kwargs)

	Implements thermal element for thermal computation.
Represents a point with heat capacity.
Change of temperature of this point depends on sum of input and
output energy and heat capacity (output energy is negative).
Several elements can be connected into a chain of elements.
Output energy depends on temperature of current element, temperature of
next element in chain, and thermal resistance between each other.
An element can have several elements of output enegry.
Second and further elements must have area of input face (square meters)
and input coefficient of transcalency on input face.

Also element may be represented as a wall with a variable area
and with variable thermal resistance on each increment of thickness, dx.
Computation is implemented in single dimension, dx (meters).
All computations are performed for increments of time, dt.
Example: compute temperature of 1 cubic meter of water in 1 hour with

1 kW of power applied:

>>> e = ThermalElement(name='cube_water', temp0=0, density=997, heat_capacity=4180, volume=1)
>>> e.count_layers
1
>>> e.compute(q_enter=1000, dt=3600)
>>> round(e.temp, 3)
0.864
>>>
Example: calculate temperature of inside face of wall of birch
with dx = 0.01 m and external power of 1 kW.
Result of test calculated manually.
>>> e = ThermalElement(name='birch_wall', temp0=20.0, density=700.0, heat_capacity=1250.0, dx=0.01, thickness=0.20, kappa=0.15, area_inside=1.0, area_outside=1.1)
>>> e.count_layers
20
>>> e.dTx_list
[20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]
>>> e.get_loss_dx(0)
0.0
>>> e.compute(q_enter=1000, dt=1)
>>> round(e.dTx_list[0], 3)
20.109
>>> round(e.dTx_list[1], 3)
20.0
>>> round(e.get_loss_dx(0),3)
1.714
>>> e.compute(q_enter=1000, dt=1)
>>> round(e.dTx_list[0], 3)
20.218
>>> round(e.dTx_list[1], 4)
20.0002
>>>
Example element which implementing thin layer between two areas
>>> e = ThermalElement(name='glass', temp0=20.0, area_inside=1.0, input_alpha=23,)
>>> e.calc_loss_input_q(25.0)
115.0

	
calc_loss_input_q(t_in: float) → float

	Calculates loss energy between current and previous elements

	
calc_temp(q_enter: float, q_loss: float, iterator: int, dt: float) → None

	Calculates the dT on dt of current point (dx) of element.
If element represent as a point then calculates.
Tdx = Tdx0 + (q_enter - q_loss)/cmdx

	Parameters

	
	q_enter – enter power from previouse element or source of power

	q_loss – total power loss from current point dx

	iterator – number of current dx

	dt – range of time for calculate

	Returns

	Nothing returns but change temperature in list of
temperatures by dx in the current point

	
compute(q_enter: float, dt: float) → None

	Start of calculate temperature of element if
it represent as a point or calculate of all
temperatures by dx if element has the dx parameter

	Parameters

	
	q_enter – input power

	dt – range of time

	Returns

	change self.temp parameter in the end of calculation

	
get_loss_dx(iterator)

	Defines loss energy from current element on dx or from all
element if it represent in calculation as a point.
q_loss = alpha*area_branch*(T_current - T_branch)

	Parameters

	iterator – number of dx, 0 if element as a point

	Returns

	Float value of all loss power

	
init_conditions(val)

	Reduction to initial conditions

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 solarhouse	

 	
 	
 solarhouse.building	

 	
 	
 solarhouse.calculation	

 	
 	
 solarhouse.export	

 	
 	
 solarhouse.helpers	

 	
 	
 solarhouse.thermal_element	

 	
 	
 solarhouse.thermal_model	

 	
 	
 solarhouse.thermal_process	

Index

 A
 | B
 | C
 | F
 | G
 | H
 | I
 | M
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	area_mass_walls_inside (solarhouse.building.Building attribute)

 	area_mass_walls_outside (solarhouse.building.Building attribute)

 	
 	as_file() (in module solarhouse.export)

 	as_html() (in module solarhouse.export)

B

 	
 	Building (class in solarhouse.building)

C

 	
 	calc_loss_input_q() (solarhouse.thermal_element.ThermalElement method)

 	calc_reflect_power() (solarhouse.building.Building method)

 	calc_sun_power_on_faces() (solarhouse.building.Building method)

 	
 	calc_temp() (solarhouse.thermal_element.ThermalElement method)

 	Calculation (class in solarhouse.calculation)

 	compute() (solarhouse.calculation.Calculation method)

 	(solarhouse.thermal_element.ThermalElement method)

F

 	
 	floor_area_inside (solarhouse.building.Building attribute)

 	
 	floor_area_outside (solarhouse.building.Building attribute)

 	floor_thickness (solarhouse.building.Building attribute)

G

 	
 	get_efficient_angle() (solarhouse.building.Building method)

 	get_loss_dx() (solarhouse.thermal_element.ThermalElement method)

 	
 	get_perimeter_floor() (solarhouse.building.Building method)

 	get_prop() (solarhouse.building.Building method)

 	get_pv_power_face() (solarhouse.building.Building method)

H

 	
 	heat_accumulator_volume (solarhouse.building.Building attribute)

I

 	
 	init_conditions() (solarhouse.thermal_element.ThermalElement method)

M

 	
 	make_init_conditions() (solarhouse.thermal_model.ThermalModel method)

 	
 	mesh_inside (solarhouse.building.Building attribute)

P

 	
 	prepare_period() (in module solarhouse.helpers)

 	
 	projection_on_flat() (solarhouse.building.Building method)

R

 	
 	run_process() (solarhouse.thermal_process.ThermalProcess method)

S

 	
 	show_schema() (solarhouse.thermal_model.ThermalModel method)

 	solarhouse.building (module)

 	solarhouse.calculation (module)

 	solarhouse.export (module)

 	solarhouse.helpers (module)

 	
 	solarhouse.thermal_element (module)

 	solarhouse.thermal_model (module)

 	solarhouse.thermal_process (module)

 	start() (solarhouse.thermal_model.ThermalModel method)

 	start_calculation() (solarhouse.calculation.Calculation method)

T

 	
 	ThermalElement (class in solarhouse.thermal_element)

 	
 	ThermalModel (class in solarhouse.thermal_model)

 	ThermalProcess (class in solarhouse.thermal_process)

V

 	
 	volume_air_inside (solarhouse.building.Building attribute)

W

 	
 	walls_area_inside (solarhouse.building.Building attribute)

 	
 	walls_area_outside (solarhouse.building.Building attribute)

 _images/schema1.png
solar power heats up thermal accumulator

walls around thermal accumulator

thermal
accumulator

>t air in room wall of room [outside

windows areas /

floor under the thermal accumulator >

outside under floor

_images/schema2.png
solar power heats up air inside the house

e

floor under the thermal accumulatort—

thermal

accumulator

outside under floor

‘> walls around thermal accumulator w

air in room

——— wall of room [

outside

\\k windows areas

h/

_images/layers2.png
Q lost = a*S(t4-t3)

t4=18

_images/model-1.png
windows areas wall of room

Air inside room

thermal floor walls around
accumulator the floor

_static/comment-bright.png

_images/schema3.png
solar power heats up wall of the house

air under
glass dome

t> glass dome

1

walls around thermal accumulator

windows areas

1

wall of room

air in room tiemmal

accumulator ‘\V

outside

floor under the thermal accumulator

-,

outside under floor

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/example1.png
804

704

04

s04

a0

304

204

o6 pM

09'Pm

Det22

03

06 AM

09

12

03Pm

06 M

_images/layers1.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Solarhouse’s documentation!

 		
 About Solarhouse project

 		
 Installation

 		
 Installation from pypi:

 		
 Installation from github

 		
 Quick start

 		
 Thermal theory and Modeling.

 		
 Calculation of heat spreading from point to point

 		
 Calculation Class

 		
 Building Class

 		
 ThermalProcess Class

 		
 Export

 		
 Helpers

 		
 Building Class

 		
 ThermalProcess Class

 		
 ThermalModel Class

 		
 Export

 		
 Helpers

 		
 ThermalProcess Class

 		
 ThermalModel Class

 		
 ThermalElement Class

 		
 ThermalModel Class

 		
 ThermalElement Class

 		
 ThermalElement Class

_static/example1.png
804

704

04

s04

a0

304

204

o6 pM

09'Pm

Det22

03

06 AM

09

12

03Pm

06 M

_static/file.png

_static/down.png

_static/formula2.png

_static/formula1-1.jpg
Sx=80%(1—(x/H)x(1-[51750))]

_static/formula1.png
1 g

19

du

k 0%u

Tcpox

Tcpox

(-

o

),

p 0a?

_static/formula3.png

_static/formula4.png
Q _ pams-),
it

_static/formula5.png
Q = cm(ty — ty).

_static/layers2.png
Q lost = a*S(t4-t3)

t4=18

_static/main_formula.png

_static/formula6.png
dT

aA
-1

_static/layers1.png

_static/model-1.png
windows areas wall of room

Air inside room

thermal floor walls around
accumulator the floor

_static/model-2.png
Air inside room

glass shell around the house

_static/minus.png

_static/schema0.png
source
of heat

_static/plus.png

_static/schema3.png
solar power heats up wall of the house

air under
glass dome

t> glass dome

1

walls around thermal accumulator

windows areas

1

wall of room

air in room tiemmal

accumulator ‘\V

outside

floor under the thermal accumulator

-,

outside under floor

_static/up-pressed.png

_static/schema1.png
solar power heats up thermal accumulator

walls around thermal accumulator

thermal
accumulator

>t air in room wall of room [outside

windows areas /

floor under the thermal accumulator >

outside under floor

_static/schema2.png
solar power heats up air inside the house

e

floor under the thermal accumulatort—

thermal

accumulator

outside under floor

‘> walls around thermal accumulator w

air in room

——— wall of room [

outside

\\k windows areas

h/

_static/up.png

